Adsorption of Methylamine on Amorphous Ice under Interstellar Conditions. A Grand Canonical Monte Carlo Simulation Study

Réka A. Horváth, György Hantal, Sylvain Picaud, Milán Szőrő, and Pál Jedlovszky

© XXXX American Chemical Society

ABSTRACT: The adsorption of methylamine at the surface of amorphous ice is studied at various temperatures, ranging from 20 to 200 K, by grand canonical Monte Carlo simulations under conditions that are characteristic to the interstellar medium (ISM). The results are also compared with those obtained earlier on crystalline (Ih) ice. We found that methylamine has a strong ability of being adsorbed on amorphous ice, involving also multilayer adsorption. The decrease of the temperature leads to a substantial increase of this adsorption ability; thus, considerable adsorption is seen at 20–50 K even at bulk gas phase concentrations that are comparable with that of the ISM. Further, methylamine molecules can also be dissolved in the bulk amorphous ice phase. Both the adsorption capacity of amorphous ice and the strength of the adsorption on it are found to be clearly larger than those corresponding to crystalline (Ih) ice, due to the molecular scale roughness of the amorphous ice surface as well as to the lack of clear orientational preferences of the water molecules at this surface. Thus, the surface density of the saturated adsorption monolayer is estimated to be 12.6 ± 0.4 μmol/m², 20% larger than the value of 10.35 ± 0.7 μmol/m², obtained earlier for Ih ice, and at low enough surface coverages the adsorbed methylamine molecules are found to easily form up to three hydrogen bonds with the surface water molecules. The estimated heat of adsorption at infinitely low surface coverage is calculated to be −69 ± 5 kJ/mol, being rather close to the estimated heat of solvation in the bulk amorphous ice phase of −74 ± 7 kJ/mol, indicating that there are at least a few positions at the surface where the adsorbed methylamine molecules experience a bulk-like local environment.

1. INTRODUCTION

The origin and formation of amino acids are of particular interest in astrochemical research because their presence in the interstellar medium (ISM) may provide clues to the delivery of prebiotic molecules to early Earth, the possible origins of life on Earth, and the possibility of Earth-like life elsewhere in the universe. Glycine and methylamine (CH₃NH₂) are not just simple structural analogs (related to each other by the presence or absence of the carboxyl group), but methylamine is also proposed to be a precursor of glycine. In the interstellar medium, CH₃NH₂ can be formed either by CH₄ and NH₃, well-known to be abundant in the ISM under cosmic ray irradiation, or by the hydrogenation reaction of HCN on icy dust surfaces. CH₃NH₂ molecules that are trapped at solid surfaces can then thermally react with CO₂ to form carbamate, which can be converted to a glycine salt under vacuum ultraviolet irradiation. Alternative pathways of this reaction, occurring through the CH₂NH₂ radical or acetic acid, were also proposed in the literature.

Both glycine and methylamine compounds are common in the terrestrial biosphere, and both have also been detected in comet-exposed material from the Stardust sample return mission to comet Wild 2, by the Cometary Sampling and Composition (COSAC) instrument on board the Rosetta Philae mission, as well as in multiple extraterrestrial samples, including carbonaceous chondrites. Carboxylic chondrites, notably the CI (e.g., Orgueil) and CM (e.g., Murchison) groups, contain high percentages (3–22%) of water and also methylamine in the concentration of 331 nmol/g (Orgueil) and 85 nmol/g (Murchison). Generally, interstellar and cometary dust grains are frequently covered...
by amorphous solid water; this mantle also traps volatile reactants, and the water molecule can act both as a catalyst and as a chemical reactant. In order to characterize methylamine astrochemistry, Vinogradoff et al. reported a laboratory experiment in which methylamine and formaldehyde were found to quickly react at interstellar or cometary ice analogues at astronomically relevant temperatures with a measured activation energy of \(1.1 \pm 0.05 \text{ kJ/mol}.\) However, in the absence of relevant experiments, desorption behavior of methylamine from the ice surface was estimated to be identical with that of ammonia (with a value of \(3 \times 10^{12}\) s as the pre-exponential factor, and 25 kJ/mol as the activation energy).

As this example also shows, a major stumbling-block in our understanding of prebiotic chemistry in the ISM is the lack of a standardized and comprehensive approach to simulate grain-surface chemistry. Furthermore, improved gas–grain astrochemical models need to be developed in order to interpret the high-resolution data provided by Atacama Large Millimeter Array (ALMA).

Besides laboratory experiments, molecular details of the adsorption of methylamine at icy surfaces can also be investigated by computer simulation methods in order to improve the current adsorption models used in astrochemistry. Such methods can well complement experiments, as they can provide a full, three-dimensional insight of atomistic resolution into a suitably chosen model of the system of interest. Among the various computer simulation techniques, the grand canonical Monte Carlo (GCMC) method is particularly suitable for studying adsorption, since here the chemical potential rather than the number of the adsorbate molecules in the basic box is fixed, and thus, by systematically varying the chemical potential and determining the number of adsorbate molecules in a set of simulations, the adsorption isotherm can be determined, and simulation results can be analyzed in detail at surface coverage values that are relevant for the given adsorption process. The GCMC method has been successfully applied in the past two decades for a set of systems, such as for the adsorption of various small molecules at carbonaceous surfaces, metal oxides, covalent organic frameworks, crystalline ice, water clathrates, kaolinite, zeolites, self-assembled monolayers, and protein crystals.

Since icy surfaces in the interstellar medium are predominantly covered by low density amorphous ice (LDA), here we study the adsorption of methylamine at the surface of LDA ice by GCMC simulations at temperatures that are relevant to the interstellar medium (i.e., a few tens of K). Besides its potential role in prebiotic evolution, methylamine, released primarily by decaying bodies, is also an abundant atmospheric pollutant, being involved in the catalytic ozone destruction process occurring at the polar stratospheres as well as increasing aerosol nucleation rates in the lower troposphere. For this purpose, recently we performed a detailed GCMC analysis of the adsorption of methylamine at the surface of crystalline \(I_h\) ice at the tropospheric temperature of 200 K. Thus, the present study provides also an excellent opportunity to investigate in detail the role of the state of the adsorbing phase (i.e., crystalline vs amorphous ice) as well as that of the temperature in the details of the adsorption process. For this purpose, here we determine the adsorption isotherm of methylamine at the surface of LDA ice and analyze in detail the properties of the adsorption layer at the temperatures of 200, 150, 100, 50, and 20 K, corresponding to the adsorption in the colder parts of the interstellar medium. Further, the comparison of the results obtained at 200 K with our earlier data obtained at the surface of \(I_h\) ice provides information on how the properties of the adsorption layer depend on the structure of the adsorbing phase, whereas the comparison of the results obtained at different temperatures can shed light on the temperature dependence of the adsorption process and even allows us to extrapolate to lower temperatures, at which computer simulation studies cannot be done within reasonable time.

The paper is organized as follows. In section 2 details of the performed calculations, including GCMC simulations and ITIM analysis, are given. The results concerning the adsorption isotherm, the building up of the subsequent molecular layers of the adsorbate, and the orientation and energetics of the adsorbed methylamine molecules that are in direct contact with the ice phase are discussed in detail in section 3. Finally, in section 4 the main conclusions of this study are summarized.

2. COMPUTATIONAL DETAILS

2.1. Grand Canonical Monte Carlo Simulations. The adsorption of methylamine at the surface of low density amorphous ice has been simulated, using the Monte Carlo method, on the grand canonical \((\mu, V, T)\) ensemble at the temperatures \(T\) of 200, 150, 100, 50, and 20 K. The \(X, Y,\) and \(Z\) edges of the rectangular basic simulation box have been 100 Å, 35.926 Å, and 38.891 Å, respectively, \(X\) being the axis perpendicular to the ice surface. The basic box has consisted of 2880 water molecules. At each temperature, simulations have been performed at several chemical potentials of methylamine, ranging from values corresponding to practically no methylamine molecules in the basic box to those corresponding to the condensed phase of methylamine. The chemical potential values at which the simulations have been performed at the various temperatures, as well as the mean number of the methylamine molecules present in the basic box, resulting from these simulations, are summarized in Tables S1–S5 of the Supporting Information.

To be consistent with our previous study concerning \(I_h\) ice, water and methylamine molecules have been described by the TIPSP model and the potential model proposed by Impey et al., respectively. TIPSP is known to be one of the best water models in describing low temperature aqueous phases, as it reproduces very well, among others, the temperature of maximum density and as well as the melting point of water. Further, TIPSP reproduces the LDA/HDA liquid–liquid phase transition of water in the temperature range considered here. Both of these models used are rigid and pairwise additive; i.e., the total potential energy of the system is assumed to be the sum of the contributions of all molecule pairs. The interaction energy of a molecule pair consists of the Lennard-Jones and charge–charge Coulomb contributions of all the respective pairs of interaction sites. The \(\text{CH}_3\) group of the methylamine molecule is treated as a single interaction site (united atom), whereas the water model has two nonatomic interaction sites, and the water molecule can act both as a catalyst and as a chemical reactant.

The simulations have been performed using the program MMC in the same way as described in our earlier paper. Thus, in every Monte Carlo step, by 50% probability, a
randomly chosen molecule has been randomly translated by no more than 0.25 Å and randomly rotated by no more than 15° or by 50% probability, the number of the methylamine molecules in the basic box has been attempted to be changed by inserting or removing a molecule. Water and methylamine molecules have been selected for particle displacement steps with equal probabilities, and methylamine insertions and deletions have also been performed with 50–50% probabilities. The insertion/deletion attempts have been made using the cavity biased scheme of Mezei,70,71 thus, insertions have only been attempted into centers of empty cavities of the radius of at least 2.6 Å. Suitable cavities have been searched for along a 100 × 100 × 100 grid, which has been regenerated after every 10⁶ Monte Carlo steps. Particle displacement and insertion/deletion attempts have been accepted or rejected according to the standard Metropolis algorithm23,72 and according to the acceptance criterion of the cavity biased scheme,70,71 respectively.

To create the LDA ice phase and surface, we started from the crystalline Ih ice phase used in our previous work. This phase was melted by thermalizing it on the canonical (N, V, T) ensemble at 350 K by performing 3 × 10⁸ Monte Carlo steps, followed by another 10⁸ Monte Carlo steps at 300 K. The melted system was then quenched by setting the temperature to 200 K and performing another 10⁸ Monte Carlo steps. Then two methylamine molecules were added to the vapor phase of the system, and this configuration has been used as the starting point of all grand canonical ensemble simulations. The system has then been equilibrated at every temperature and chemical potential by performing 10⁹ to 3 × 10⁹ Monte Carlo steps, until neither the average total energy of the system nor the mean number of methylamine molecules has shown even traces of a systematic drift. The mean number of the methylamine molecules has then been determined in every case by generating a 2 × 10⁶ Monte Carlo steps long equilibrium trajectory. Equilibrium snapshots of the 20 K system are shown in Figure 1, both in top and side views, as obtained at four different chemical potential values of methylamine.

To investigate the properties of the adsorption layer in detail, at selected chemical potential values, 5000 equilibrium sample configurations separated by 4 × 10⁵ Monte Carlo steps long runs each have been saved from the 2 × 10⁹ Monte Carlo steps long production runs for further evaluation. At each temperature four such chemical potential values have been chosen. The first of these values always corresponds to the presence of only very few, isolated methylamine molecules at the ice surface, the second one to a partly unsaturated monolayer, in which the methylamine molecules are no longer isolated from each other, the third one to a more or less saturated monolayer, while the fourth one to multilayer adsorption. For comparison with our earlier results, at 200 K dumping of configurations has also been done at two more chemical potential values, at which detailed analysis of the adsorption layer on Ih ice was earlier performed.47 Finally, for reference purposes, configurations have also been saved for analyses at a μ value corresponding to the condensed phase of methylamine at 200 K. These μ values, together with the mean number of methylamine molecules resulting from the corresponding simulations, are collected in Table 1 and are also indicated in Tables S1–S5 of the Supporting Information.

2.2. Identification of the Dissolved and First Layer Methylamine Molecules. It has turned out from the
Table 1. Properties of the System at the Thermodynamic State Points Where Sample Configurations Have Been Collected for Detailed Analyses

<table>
<thead>
<tr>
<th>T, K</th>
<th>μ, kJ mol⁻¹</th>
<th>⟨N⟩</th>
<th>P_rel</th>
<th>T_rel μmol m⁻²</th>
<th>c, mol dm⁻³</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>−47.87</td>
<td>6.010</td>
<td>3.48 × 10⁻¹⁷</td>
<td>0.445</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>−50.83</td>
<td>5.263</td>
<td>7.88 × 10⁻¹⁵</td>
<td>0.391</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>−51.05</td>
<td>4.942</td>
<td>3.06 × 10⁻¹⁰</td>
<td>3.41</td>
<td>0.98 × 10⁻²</td>
</tr>
<tr>
<td>150</td>
<td>−50.49</td>
<td>3.089</td>
<td>3.91 × 10⁻¹⁵</td>
<td>1.59</td>
<td>1.48 × 10⁻²</td>
</tr>
<tr>
<td>200</td>
<td>−50.49</td>
<td>3.089</td>
<td>3.91 × 10⁻¹⁵</td>
<td>1.59</td>
<td>1.48 × 10⁻²</td>
</tr>
</tbody>
</table>

The average number of methylamine molecules present in the basic box, ⟨N⟩, is shown as a function of the chemical potential in Figure 2 as obtained from our GCMC simulations.
amine molecules can only be made on saved sample configurations. Therefore, the isotherms shown in Figure 2 include both the adsorbed and dissolved methylamine molecules. The isotherms corresponding to different temperatures are rather similar to each other in shape: they all rise sharply and continuously up to the sudden jump corresponding to the point of condensation, without exhibiting any marked plateau. The very steep rise of the isotherms, occurring immediately before condensation, suggests that the adsorption of methylamine is not limited to one single molecular layer. As expected, the isotherms are shifted to higher chemical potential values with decreasing temperature. The \(\mu \) values corresponding to the point of condensation, denoted here as \(\mu_0 \), are estimated from the position of the steepest rising part of the isotherms to be \(-26.26, -27.76, -30.20, -32.34, \) and \(-33.66 \) kJ/mol at 20, 50, 100, 150, and 200 K, respectively. As seen from Figure 3, the value of \(\mu_0 \) increases practically linearly with decreasing temperature. Considering that, for one component, \(\mu \) is simply the molar free energy, and hence the molar entropy, \(S^\mu \), is related to its temperature derivative as \(S^\mu = -(\partial \mu / \partial T) \), the observed linear temperature dependence of \(\mu_0 \) implies that the corresponding molar entropy is constant (i.e., \(41.9 \pm 2.7 \) J/(mol K)).

The comparison of the isotherms obtained at 200 K at the surfaces of crystalline (\(I_h \))\(^{47} \) and amorphous ice is shown in the inset of Figure 2. As is seen, there are several important differences between the two isotherms. First, at low \(\mu \) values, i.e., below about \(-40 \) kJ/mol, the isotherm corresponding to amorphous ice goes consistently above that of the \(I_h \) ice. Since in this chemical potential range even the first molecular layer of methylamine is far from being saturated, this difference indicates stronger interaction of the methylamine molecules with the corrugated surface of amorphous ice, containing several troughs on the molecular length scale within which an adsorbed molecule can have more contact with the surrounding waters than with the flat surface of \(I_h \) ice. Second, the clear plateau of the isotherm corresponding to \(I_h \) ice in the \(\mu \) range between \(-40 \) and \(-35 \) kJ/mol, corresponding to the saturated monolayer, is completely missing in the case of amorphous ice. Instead, this latter isotherm rises continuously even in this \(\mu \) range, indicating the building up of outer molecular layers of methylamine here. The lack of particular stability of the saturated monolayer at the amorphous ice surface is probably due to the fact that the adsorbed monolayer reflects the corrugation of the ice surface, and hence it also has several pockets of negative local curvature, in which the building up of the second molecular layer can start earlier than on a relatively flat monolayer, present at the surface of \(I_h \) ice. Finally, above the point of condensation the isotherm corresponding to amorphous ice goes again above that of \(I_h \) ice. However, in this \(\mu \) range this difference simply reflects the higher density of the somewhat disordered amorphous ice than that of the \(I_h \) ice, which leaves more space for the methylamine molecules in the basic simulation box.

It should be emphasized, however, that the isotherm obtained at amorphous ice contains also the methylamine molecules that are dissolved in the ice phase, while no such dissolved molecules were found in the case of \(I_h \) ice.\(^{47} \) Hence, all the observed differences of the two isotherms in all the three above-discussed ranges of \(\mu \) can, at least partly, be accounted for simply by the methylamine molecules dissolved in the bulk amorphous phase.

We have also converted the obtained \(\langle N \rangle \) vs \(\mu \) isotherms to the more conventional \(\Gamma \) vs \(p_{rel} \) form, where \(\Gamma \) is the surface density of methylamine, calculated simply as

\[
\Gamma = \frac{\langle N \rangle}{2YZ}
\]

and \(p_{rel} \) is the relative pressure, i.e., the ratio of the pressure of the system, \(p \), and the pressure corresponding to the point of condensation of methylamine at the given temperature, \(p_0 \). \(p_{rel} \) can be calculated using the value of \(\mu_0 \) as\(^{24} \)

\[
p_{rel} = \frac{p}{p_0} = \frac{\exp(\mu/T)}{\exp(\mu_0/T)}
\]

where \(k_B \) is the Boltzmann constant. It should be noted that since \(p_0 \) is the pressure of the saturated vapor of methylamine, isotherms can only be converted to the \(\Gamma(p_{rel}) \) form up to the point of condensation, i.e., when methylamine is still in its vapor phase.

The obtained isotherms are shown in the \(\Gamma \) vs \(p_{rel} \) form in Figure 4 as obtained at the five temperatures considered; the corresponding values are also included in Tables S1–S5 of the Supporting Information. It should be emphasized again that these isotherms still contain the molecules that are dissolved in the bulk amorphous ice phase. As is seen, at a given \(p_{rel} \) value the amount of adsorbed methylamine increases with decreasing temperature, and hence at lower temperatures multilayer adsorption occurs at lower \(p_{rel} \) values. It is also evident that the low pressure rising part of the isotherm becomes progressively steeper as the temperature decreases, due to the explicit dependence of \(p_{rel} \) on the temperature (see eq 2). This steep rise of the \(\Gamma(p_{rel}) \) isotherm at low temperatures results in considerable surface densities of methylamine already around the relative pressure value of \(10^{-30} \) at 20 K and \(10^{-20} \) at 50 K. To estimate the corresponding absolute pressure range, one needs the value of \(p_0 \) at these temperatures, the value of which is clearly inaccessible from the simulations. The temperature dependence of the experimental value of \(p_0 \) is described by the Antoine equation:\(^{75} \)

\[
\ln p_0 = A - \frac{B}{T} + C
\]
(p_0 and T being in units of Pa and K, respectively), with the Antoine parameter values of A = 21.92, B = 2383.1 K, and C = −37.574 K, at least in the temperature range between 190 and 267 K [76,77]. On the other hand, upon going to lower temperatures, eq 3 is expected to provide progressively worse estimate of p_0, this estimate being 1.4 × 10^5 Pa at 200 K, 2 Pa at 150 K, and about 10^−2 Pa at 100 K. By use of the very conservative estimate of 1 Pa for p_0 both at 20 and 50 K, the gas phase concentration of methylamine corresponding to the above relative pressure values (i.e., 10^−10 at 20 K and 10^−20 at 50 K) can be estimated through ε = p/(RT) as about 10^−35 mol/dm^3 (20 K) and 5 × 10^−35 mol/dm^3 (50 K), respectively. Considering that the typical molecular number density of methylamine in the ISM is about on the order of 10^28 molecule/dm^3, i.e., 10^−35 mol/dm^3,78 our results reveal that considerable adsorption of methylamine at icy surfaces can be expected at the density and temperature characteristic of the cold part of the ISM.

The Γ(p_{rel}) isotherms obtained at 200 K at the surfaces of I_{h}, and amorphous ice are compared in the inset of Figure 4. This comparison corroborates the conclusion drawn from the comparison of the ⟨N⟩ vs μ isotherms that the saturated monolayer of methylamine consists of more molecules at the surface of amorphous than at I_{h} ice. To better understand the nature of the adsorption, we have fitted the Langmuir isotherm,79,80

\[\Gamma = \Gamma_{\text{max}} \frac{p_{\text{rel}} K}{1 + p_{\text{rel}} K} \]

(4)
to the obtained Γ vs p_{rel} data at 200, 150, and 100 K. In eq 4, the Langmuir parameters Γ_{max} and K are the surface density of the saturated monolayer and the Langmuir partition coefficient, measuring the affinity of the adsorbate to the surface, respectively.79,80 The Langmuir curves fitted to the simulated data points are indicated by dashed lines in Figure 4. As is seen, the obtained data can be reasonably well fitted up to a certain relative pressure value. This fit is never perfect, since the relatively strong lateral interaction acting between the adsorbed methylamine molecules introduces some slight deviation of the adsorption isotherms from the Langmuir form, as it was already noted in our previous study concerning I_{h} ice.47 Nevertheless, the fitted curve does not deviate strongly from the data points up to the p_{rel} value of about 0.2, 0.05, and 0.02 at 200 K, 150 K, and 100 K, respectively, and this agreement also involves the beginning of the plateau part in every case. It should be emphasized, however, that apart from the two points above p_{rel} = 0.8 at 200 K, all data points have always been involved in the fitting procedure, not only the ones being in the p_{rel} range of reasonably good fit. Clearly, at 200 and 150 K the last two points, while at 100 K the last three points, that are used in the fitting procedure correspond to much larger Γ values than what is predicted from the fit, in spite of the fact that these points at intermediate p_{rel} values seemingly form a plateau of the isotherm. This plateau clearly could not be fitted in any case. Instead, the fitted functions and thus also the values of the Γ_{max} parameter are determined predominantly by the low p_{rel} data points, where the assumptions underlying the Langmuir isotherm are well satisfied. This fact suggests that the difference between the plateau value of the data points and that of the fitted Langmuir isotherm reflects primarily the effect of the methylamine molecules dissolved in the bulk amorphous ice phase (and, possibly, also partly the effect of the molecules that are located at the negative local curvature troughs of the saturated first molecular layer, forming already traces of the second molecular layer). The Γ_{max} values obtained from the Langmuir fit resulted in 12.4, 12.2, and 13.0 μmol/m^2 at 200 K, 150 K, and 100 K, respectively, suggesting that the surface density of the saturated monolayer of methylamine at the surface of amorphous ice is 12.6 ± 0.4 μmol/m^2. This value is considerably higher than that corresponding to the surface of I_{h} ice of 10.35 μmol/m^2, reflecting the fact that the corrugated surface of amorphous ice can host more adsorbed molecules in the first monolayer than the flat surface of I_{h} ice. (This difference is also seen from the Langmuir functions fitted to the two 200 K data sets in the inset of Figure 4.)

To check whether our above approach is correct, we have calculated the mass density profile of all methylamine molecules as well as of only those forming the first molecular layer at selected chemical potential values, using the saved sample configurations, at the five temperatures considered. The obtained profiles are shown in Figure 5. As is seen, at least at the highest chemical potential value considered at every temperature, the two profiles are markedly different from each other, indicating that at these state points the adsorption extends well beyond the first molecular layer. Assuming that the first molecular layer is already saturated in these cases, the number of molecules forming this layer can be estimated. Further, this assumption can be confirmed considering the case of condensed methylamine at 200 K (see the upper panel of Figure 5), where this layer must be saturated. The number of methylamine molecules belonging to this saturated first molecular layer turns out to be 210 ± 20 in every case, which corresponds to the Γ value of 12.5 ± 1 μmol/m^2, being in excellent agreement with the value estimated from the Langmuir fit of 12.6 ± 0.4 μmol/m^2. The Γ values

Figure 4. Adsorption isotherms of methylamine on amorphous ice, shown in the form of surface density vs relative pressure, as obtained from our sets of GCMC simulations at the five temperatures considered. Black circles: T = 200 K. Red squares: T = 150 K. Green up triangles: T = 100 K. Blue down triangles: T = 50 K. Orange diamonds: T = 20 K. The lines connecting the points are just guides to the eye. The Langmuir isotherms fitted to the 200, 150, and 100 K data are shown by dashed lines of the respective colors. The inset compares the isotherm obtained here at 200 K (filled circles) with that obtained previously at this temperature on crystalline Ih ice (ref 47, open circles), together with the Langmuir isotherms fitted to them. All data points include also the molecules that are dissolved in the bulk ice phase.
corresponding to the first molecular layer of methylamine at the selected chemical potential values, μ_{first}, along with the corresponding p_{rel} values, are also included in Table 1.

Having the adsorbed and dissolved methylamine molecules distinguished from each other, at least at the chemical potential values at which sample configurations have been collected, the dissolution (solubility) isotherms can also be, at least, estimated. The average number of the dissolved methylamine molecules, $\langle N_{\text{sol}} \rangle$, is shown as a function of the chemical potential at the five temperatures considered in Figure 6, while the inset of the figure shows these data in the form of bulk concentration vs relative pressure. The lines connecting the points are just guides to the eye. The inset shows the same isotherms, in the form of bulk concentration vs relative pressure.

\[
c = \frac{\langle N_{\text{sol}} \rangle}{X_{\text{ice}} Y Z}
\]

where the value of X_{ice}, i.e., the X range of extension of the amorphous ice phase, has been estimated to be 60 Å from the density profile of the water molecules (see Figure 5). The c values obtained at different chemical potentials and temperatures are also included in Table 1. In interpreting the $c(p_{\text{rel}})$ solubility isotherms, it should be recalled that by performing particle insertion and deletion steps, the GCMC method efficiently removes any barrier corresponding to the direct transport of the molecules between markedly different environments (e.g., the bulk vapor phase, ice surface, and bulk ice phase) and simply results in configurations corresponding to the thermodynamic equilibrium. Therefore, our results show that in thermodynamic equilibrium a non-negligible amount of methylamine molecules is dissolved in the bulk LDA phase, but cannot say anything about the possible kinetic hindrance of reaching this equilibrium situation.

3.2. Orientation of the First Layer Methylamine Molecules. The full description of the relative orientation of a rigid body relative to an external direction requires the use of two independent orientational variables, such as the two polar angles of the external vector in a suitably chosen coordinate frame fixed to the rigid body. Therefore, the orientational statistics of such rigid bodies, such as rigid molecules in a computer simulation, relative to an external direction can only be fully described by the bivariate joint distribution of these variables.\cite{81,82} In analyzing the orientational preferences of the first layer methylamine molecules relative to the ice surface (or, equivalently, to the surface normal), we have chosen these variables in the following way. The frame is fixed to the individual methylamine molecules; its origin is the N atom, axis z points along the $\text{N} - \text{CH}_3$ bond from the N atom to the CH$_3$ group, axis y is parallel with the segment that joins the two hydrogen atoms of the NH$_2$ group, while axis x is perpendicular to the above two axes, and it is oriented in such a way that the x...
coordinates of the amine H atoms are positive. The orientational variables θ and ϕ are then the polar angles of the surface normal axis, \vec{X}, pointing, by our convention, away from the ice phase (see Figure 7). To analyze the orientation of the surface water molecules, we have defined the local frame, fixed to the individual water molecules, in such a way that its origin is the O atom, axis x is the molecule normal, axis y is parallel with the line connecting the two H atoms, and axis z points along the bisector of the H–O–H angle, while θ and ϕ are again the polar angles of \vec{X} in this frame (see Figure 7). Due to the symmetry of the methylamine and water molecules, the above frames are always chosen such that the inequalities $\phi \leq 180^\circ$ and $\phi \leq 90^\circ$, respectively, are also satisfied. It should also be noted that while θ is the angle between two spatial vectors, ϕ is that of two planar ones (i.e., two vectors that both lay, by definition, in the xy plane of the local frame), and hence random surface orientation results in a uniform bivariate distribution only if $\cos \theta$ and ϕ are chosen to be the orientational variables.81,82

The $P(\cos \theta, \phi)$ orientational maps of the first layer methylamine molecules are shown in Figure 8 as obtained at selected chemical potentials at the five temperatures considered. For comparisons, orientational maps, obtained previously on I_h ice at 200 K at the same chemical potential values that are also considered here, are also shown (top row). As is seen, the obtained maps are rather noisy, especially at low temperatures and low surface coverages, due to the extremely slow exploration of the configurational space at these very low temperatures. This fact limits the range of conclusions concerning the surface orientation of the adsorbed molecules that we can reliably draw from these orientational maps. Nevertheless, it is still clear that methylamine molecules prefer orientations corresponding to the $\cos \theta$ value of 0, i.e., to the situation where the N–CH$_3$ bond lays parallel with the macroscopic plane of the ice surface, YZ. This preference is stronger at lower surface coverages, and smoother distributions are obtained at higher temperatures, when the larger thermal motion of the molecules results in better statistics. Among the various orientations corresponding to $\cos \theta = 0$, no alignment is found to be clearly preferred at every temperature and surface coverage; the maps corresponding to various state points often exhibit preferences around the ϕ values of 0°, 60°, 90°, 120°, and 180°. The alignments of the methylamine molecules corresponding to $\cos \theta = 0$ and these particular ϕ values are illustrated in Figure 7. In these orientations, the methylamine molecule always turns one or two of its three hydrogen bonding directions (i.e., the two N–H bonds and the lone pair direction of the N atom) toward the ice surface. However, due to the molecular scale roughness of the surface of amorphous ice and to the corresponding presence of pockets of locally negative curvature at the surface, the adsorbed methylamine molecules located in such pockets can easily form even three hydrogen bonds with the surface waters, especially at low surface coverages. The extensive H-bond formation between the first layer methylamine and surface water molecules is also facilitated by the fact that surface waters on amorphous ice have very weak orientational preferences, as compared to those at the surface of I_h ice, as demonstrated in Figure 7. The orientational flexibility of the surface water molecules enables them to adopt orientations by which they can maximize the number of methylamine–water hydrogen bonds. Further, as it was discussed in detail in our previous paper,57 the parallel
alignment of the N–CH₃ bond with the ice surface promotes various relative alignments, corresponding to strong dipolar interaction, of the neighboring adsorbed methylamine molecules.

3.3. Energetics of the Adsorption. To further analyze the interaction of the adsorbed methylamine molecules both with each other and with the surface waters and to characterize the energetic background of the adsorption, we have calculated the binding energy of the methylamine molecules belonging to the first molecular layer at the selected chemical potential values at all the five temperatures considered. The binding energy of an adsorbed molecule, U_b, is defined as its interaction energy with the rest of the system (i.e., the energy cost of bringing this molecule to infinite distance). Besides U_b, its contributions

Figure 8. Orientational maps of the first layer methylamine molecules at the surface of crystalline (I_h) ice at 200 K (top row, ref 47) as well as at the surface of amorphous ice at 200 K (second row), 150 K (third row), 100 K (fourth row), 50 K (fifth row), and 20 K (bottom row), as obtained at selected chemical potential values. In the maps, lighter colors correspond to higher probabilities.
coming from the interaction with the ice phase, and with the other methylamine molecules present in the system, denoted here as U_{b}^{ic} and U_{b}^{fi}, respectively, have also been calculated.

Some of the $P(U_{b}^{\text{ic}})$, $P(U_{b}^{\text{fi}})$, and $P(U_{b}^{\text{lat}})$ distributions obtained at 200 K are shown and compared with the corresponding results on I_{f} ice in Figure 9, while those obtained at 150, 100, and 50 K are shown in parts a, b, and c of Figure 10, respectively. (Similar but considerably more noisy distributions have been obtained at 20 K.) As is expected, the lateral contribution to the total binding energy does not depend on the state of the ice phase. At low surface coverages, the main peak of the $P(U_{b}^{\text{ic}})$ distribution occurs at zero energy, reflecting the large fraction of isolated methylamine molecules in the adsorption layer. Besides this trivial peak, another peak can be seen around -20 kJ/mol. This peak can be attributed to neighboring methylamine dimers interacting with each other by strong dipolar interaction.47 With increasing surface coverages, both of these peaks shift to lower energies due to the increasing background of the adsorbed methyamines, and also the relative weight of the latter, lower energy peak gradually increases. The only difference seen between the $P(U_{b}^{\text{ic}})$ distributions obtained on amorphous and I_{f} ices is that the relative weight of the lower energy peak is slightly larger in the former case. This difference can, however, simply be explained by the somewhat higher surface coverage observed on amorphous than on crystalline ice at every chemical potential (see Figure 2).

On the other hand, the type of the ice phase has a great impact on the ice contribution to the binding energy, U_{b}^{ic}. At the surface of I_{f} ice, the $P(U_{b}^{\text{ic}})$ distribution exhibits a peak around -55 to -50 kJ/mol and another one between -35 and -30 kJ/mol, attributed to the methylamine molecules forming two and one hydrogen bonds with the ice phase, respectively, and with increasing surface coverage the relative weight of this latter peak increases gradually.47 At the surface of amorphous ice, this distribution is markedly shifted to lower energies. Further, besides the above two positions, another peak of the distribution emerges between -75 and -70 kJ/mol. This peak can be attributed to methylamine molecules forming three hydrogen bonds with the ice surface. In principle, a methylamine molecule can form up to three hydrogen bonds and could orient in such a way (i.e., turning the CH$_3$ group straight away from the ice surface) that all the three of its potential H-bonding directions (i.e., the two N—H bonds and the lone pair of the N atom) point toward the ice phase. However, this orientation (corresponding to the cos $\theta = 1$ line of the orientational maps of Figure 8) was found not to be preferred at all both on crystalline and on amorphous ice. The reason for the lack of preference for this orientation is probably that it hinders the formation of strong dipolar pairs by the neighboring adsorbed methylamine molecules (or, more precisely, the formation of such a dipolar pair in the first molecular layer would imply very weak interaction of the other methylamine molecule with the ice phase).47 On the other hand, the molecular level corrugation of the surface of amorphous ice offers certain positions of locally negative curvature (i.e., molecular size troughs), within which the adsorbed methylamine molecule can still maintain all of its three possible hydrogen bonds. It is also seen from Figure 9 that the increase of the surface density leads both to the slight shift of the position of the $P(U_{b}^{\text{ic}})$ peaks to higher energies and to the increase of the relative weights of the peaks corresponding to smaller number of hydrogen bonds. Both effects can be explained by the increasing competition of the methylamine molecules at the surface.

The heat of the adsorption at infinitely low surface coverage, an experimentally accessible quantity, can be estimated by the mean value of the $P(U_{b}^{\text{ic}})$ distribution at low enough surface coverages, where the lateral interaction is small enough with respect to the adsorbate—adsorbent interaction. By use of the lowest sampled chemical potential in each case, this value turns out to be -72 kJ/mol at 200 K and scatters between -65 and -75 kJ/mol at the other temperatures considered, showing no apparent temperature dependence; its temperature independent value is estimated here to be -69 ± 5 kJ/mol. By contrast, at the surface of I_{f} ice this value was found to be only -51.3 kJ/mol,47 emphasizing again the higher affinity of methylamine to the surface of amorphous compared to that of crystalline ice. Unfortunately, we are not aware of any experiment in which this value is accessed at infinitely low surface coverage. The binding energy of methylamine on amorphous ice was, however, estimated in the very recent paper of Chaabouni et al.47 at higher surface coverages. In a clear accordance with our results, they obtained a trimodal distribution at the surface coverage corresponding to 32% of the saturated monolayer, with the mean values of the peaks corresponding roughly to

Figure 9. Distribution of the total binding energy of the first layer methylamine molecules (bottom panel), as well as its contributions coming from the interaction with the other methylamine molecules in the system (middle panel) and with the ice phase (top panel), as obtained at 200 K at the surface of crystalline (I_{c}) ice (open symbols, ref 47), and at that of amorphous ice (full symbols) at the chemical potential values of -35.5 kJ/mol (red), -42.2 kJ/mol (blue), and -47.2 kJ/mol (orange).
−35, −45, and −61 kJ/mol (see Figure 7 of ref 83.). Similar although somewhat lower values are obtained here when considering chemical potential values corresponding to similar surface coverages (e.g., −34, −52, and −71 kJ/mol at 100 K). At the lowest surface coverage considered, corresponding to 15% of the saturated monolayer, Chaabouni et al. estimated the

Figure 10. Distribution of the total binding energy of the first layer methylamine molecules (bottom panel), as well as its contributions coming from the interaction with the other methylamine molecules in the system (middle panel) and with the ice phase (top panel), as obtained at the surface of amorphous ice at selected chemical potential values at (a) 150 K, (b) 100 K, and (c) 50 K.
binding energy to be \(-50 \text{ kJ/mol}\),\(^8\) which is considerably smaller in magnitude than our estimate of \(-69 \pm 5 \text{ kJ/mol}\). However, our value is derived from configurations corresponding to the surface coverage values of 0.18–0.36 \(\mu\text{mol/m}^2\), which, considering our estimate of 12.6 \(\mu\text{mol/m}^2\) for the saturated monolayer (see section 3.1), corresponds to only 1.5–3% of the saturated monolayer. This one order of magnitude difference between the surface coverages can largely explain the above difference between our result and the value reported by Chaabouni et al. It should also be noted that Chaabouni et al. measured the surface desorption rate of methylamine and derived the binding energy distribution using several model assumptions.\(^8\) Nevertheless, this comparison also leaves open the possibility that the potential model combination used in the present study somewhat overestimates the adhesion between the ice surface and the methylamine molecules. It should also be noted that the experimental value of the activation energy of the methylamine desorption reported by Chaabouni et al. and the heat of adsorption of the activation energy of methylamine desorption at low temperatures, the obtained \(P(U_b')\) curves exhibit two distinguishable peaks, still reflecting the presence of methylamine molecules forming two and three hydrogen bonds with the surface waters.

The binding energy distributions obtained at lower temperatures show the same general picture, with no apparent temperature dependence of their features. The only clear effect of the temperature decrease is that the distributions become more structured, and their peaks get sharper. Although this effect can be explained by the decreasing weight of the entropy term of the free energy of the system, it is presumably also, at least partly, due to the worsening of the sampling due to the decreased mobility of the molecules at lower temperatures.

Besides that of the adsorption layer, we have also investigated the energetics of the methylamine molecules that are dissolved in the bulk ice phase. The bulk phase concentration of these molecules is always small enough that the lateral contribution to their binding energy is nearly zero. Therefore, here we only discuss the distribution of the ice contribution, \(U_b^\text{ice}\). The \(P(U_b')\) distribution of the dissolved molecules is shown in Figure 11 in all cases when it is not affected by too large statistical noise. The distributions do not show apparent dependence on the chemical potential (as the corresponding bulk ice concentration is always small enough); the observed differences can rather be attributed to the poor sampling due to the small number of the dissolved molecules.

At 200 K, the obtained \(P(U_b')\) distributions are smooth and unimodal, having their peak between \(-80\) and \(-85 \text{ kJ/mol}\). At lower temperatures, peaks corresponding to methylamines forming two and three hydrogen bonds with the surrounding water molecules can, in some cases, be distinguished. The overall picture is rather similar to what has been seen in the first adsorbed monolayer, with a shift of the entire distributions to about \(-10 \text{ kJ/mol}\) lower energies. The energy of solvation at infinite dilution, obtained considering the \(P(U_b')\) distribution in all cases when the \(P(U_b')\) distribution (not shown) does not extend below \(-5 \text{ kJ/mol}\), has turned out to be \(-74 \pm 7 \text{ kJ/mol}\). This value is only about \(5 \text{ kJ/mol}\) deeper than what is obtained in the surface monolayer, emphasizing again that at low enough surface coverages methylamine molecules can be accommodated in pockets of locally negative curvature of the surface, in which their local environment can be rather similar to that inside the bulk ice phase.

4. SUMMARY AND CONCLUSIONS

In this paper, we presented a detailed computer simulation analysis of the adsorption of methylamine at the surface of amorphous ice at low temperatures, some of which are relevant in studying processes occurring in the ISM. Our results clearly showed that methylamine has a strong ability of being adsorbed at such surfaces, which leads even to multilayer adsorption at high enough relative pressures. The adsorption was found to be strongly enhanced by the decrease of the temperature; thus, in the temperature range of 20–50 K, characteristic of a large part of the space, considerable surface densities can be reached even at low bulk gas phase concentrations that occur in the ISM. It should be emphasized, however, that our simulations access...
only the state of thermodynamic equilibrium but can say nothing about the kinetics of the adsorption. In other words, we found that at the low temperatures and concentrations characteristic of the ISM icy surfaces may well contain a considerable amount of adsorbed methylvamine in equilibrium, but have no access to the time scale within which this equilibrium can be reached under the extreme conditions of the ISM.

When comparing our present results with those obtained earlier at the surface of crystalline \(I_h\) ice under similar conditions, we found a considerably higher adsorption capacity of the amorphous ice surface than that of \(I_h\) ice, primarily due to the larger surface area of the amorphous phase, resulting from the corrugation of its surface. This increase of the surface area is estimated to be as large as 20% from the surface densities of the saturated monolayer, being 10.35 \(\mu\)mol/m\(^2\) on crystalline \(I_h\) while about 12.5 \(\mu\)mol/m\(^2\) on amorphous ice. Further, besides its increased adsorption capacity, it is also found that amorphous ice, unlike \(I_h\) ice, is able to dissolve a noticeable amount of methylvamine. This finding is in a clear agreement with the experimental finding of Vinogradoff et al. 21

When analyzing the orientation and energetics of the methylvamine molecules forming the first molecular layer, we found that the aforementioned enhanced adsorption capacity of amorphous ice is coupled with its ability of binding methylvamine molecules considerably stronger than \(I_h\) ice. Thus, due to the molecular size roughness of the surface of amorphous ice (i.e., the presence of troughs) and to the almost negligible orientational preference of the surface water molecules, the first layer methylvamine molecules can easily form even three hydrogen bonds with the surface water molecules, at least at low enough surface coverages. This behavior is in a clear contrast with our earlier finding on \(I_h\) ice, where the adsorbed molecules do not form more than two such H-bonds. This difference is also reflected in the estimated heat of adsorption values at infinitely low surface coverage of \(-51.3\) kJ/mol (on \(I_h\) ice) and \(-69 \pm 5\) kJ/mol (on amorphous ice). This latter value is rather close to the estimated heat of solvation of \(-74 \pm 7\) kJ/mol in the bulk amorphous ice phase, confirming again that at the rough surface of amorphous ice, consisting of water molecules with no particular predefined orientational preferences, methylvamine molecules at low surface coverages experience an almost bulk-like local environment. Finally, it has to be pointed out that the heat of adsorption, estimated at the surface of both \(I_h\) and amorphous ice, is considerably lower than the speculative value of Vinogradoff et al. of \(-25\) kJ/mol, revealing that the crude assumption of considering this value to be identical with that of \(NH_3\) made in this latter study, clearly represents a serious oversimplification of the real situation.

ACKNOWLEDGMENTS

The authors acknowledge financial support from the NKFIH Foundation, Hungary (Project 119732), from the Hungarian-French TéT (BALATON) program (Project TéT_15.FR-1-2016-0056), and from CNRS in the frame of the PICS program. M.Sz. is grateful for the financial support by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (Grant BO/00113/15/7) and the New National Excellence Program of the Ministry of Human Capacities (Grant UNKP-17-4-III-ME/26) and also acknowledges the support provided by the European Union and the Hungarian State, cofinanced by the European Regional Development Fund in the framework of the GINOP-2.3.4-15-2016-00004 project, aimed to promote the cooperation between the higher education and the industry. The authors are indebted to Dr. Céline Toubin (University of Lille) for discussions initiating this study.

REFERENCES

